3ketosteroid receptors

Steroid receptors are a subfamily of nuclear receptors found throughout all metazoans. They are highly important in the regulation of development, inflammation, and reproduction and their misregulation has been implicated in hormone insensitivity syndromes and cancer. Steroid binding to SRs drives a conformational change in the ligand binding domain that promotes nuclear localization and subsequent interaction with coregulator proteins to affect gene regulation. SRs are important pharmaceutical targets, yet most SR-targeting drugs have off-target pharmacology leading to unwanted side effects. A better understanding of the structural mechanisms dictating ligand specificity and the evolution of the forces that created the SR-hormone pairs will enable the design of better pharmaceutical ligands. In order to investigate this relationship, we attempted to crystallize the ancestral 3-ketosteroid receptor (ancSR2) with mifepristone, a SR antagonist. Here, we present the x-ray crystal structure of the ancestral 3-keto steroid receptor (ancSR2)-progesterone complex at a resolution of ?. This improves upon our previously reported structure of the ancSR2-progesterone complex, permitting unambiguous assignment of the ligand conformation within the binding pocket. Surprisingly, we find mifepristone, fortuitously docked at the protein surface, poised to interfere with coregulator binding. Recent attention has been given to generating pharmaceuticals that block the coregulator binding site in order to obstruct coregulator binding and achieve tissue-specific SR regulation independent of hormone binding. Mifepristone’s interaction with the coactivator cleft of this SR suggests that it may be a useful molecular scaffold for further coactivator binding inhibitor development.

Since approximately 1% of 3-ketosteroid reductase (which metabolizes dihydrotestosterone (17 beta-hydroxyl-5 alpha-androstan-3-one] to 5 alpha-androstane-3 alpha, 17 beta-diol or 5 alpha-androstane-3 beta, 17 beta-diol) from mouse kidney cytosol adheres to DNA under conditions that allow virtually complete androgen receptor binding, these two DNA-binding activities were compared in cytosol extracts of mouse kidney and hypothalamus-preoptic area. This DNA-binding fractions of 3-ketosteroid reductase was distinguished from androgen receptor in several ways: (1) its pattern of elution from DNA-cellulose with steps of increasing NaCl concentration differed from that for receptors from wild-type kidney; (2) it was influenced differently by the mutation Tfm, both in level and in DNA-cellulose elution pattern; (3) in mouse kidney cytosol it was relatively stable at moderate (25 degrees C) temperatures which rapidly inactivated ligand-free androgen receptors in the same cytosols; (4) the DNA-binding was not proportional to androgen receptor levels between two wild-type tissues, the hypothalamus-preoptic area and kidney. By these criteria, a simple relationship of androgen receptors and a DNA-binding fraction of 3-ketosteroid reductase activity is unlikely.

Steroid receptors are a subfamily of nuclear receptors found throughout all metazoans. They are highly important in the regulation of development, inflammation, and reproduction and their misregulation has been implicated in hormone insensitivity syndromes and cancer. Steroid binding to SRs drives a conformational change in the ligand binding domain that promotes nuclear localization and subsequent interaction with coregulator proteins to affect gene regulation. SRs are important pharmaceutical targets, yet most SR-targeting drugs have off-target pharmacology leading to unwanted side effects. A better understanding of the structural mechanisms dictating ligand specificity and the evolution of the forces that created the SR-hormone pairs will enable the design of better pharmaceutical ligands. In order to investigate this relationship, we attempted to crystallize the ancestral 3-ketosteroid receptor (ancSR2) with mifepristone, a SR antagonist. Here, we present the x-ray crystal structure of the ancestral 3-keto steroid receptor (ancSR2)-progesterone complex at a resolution of Å. This improves upon our previously reported structure of the ancSR2-progesterone complex, permitting unambiguous assignment of the ligand conformation within the binding pocket. Surprisingly, we find mifepristone, fortuitously docked at the protein surface, poised to interfere with coregulator binding. Recent attention has been given to generating pharmaceuticals that block the coregulator binding site in order to obstruct coregulator binding and achieve tissue-specific SR regulation independent of hormone binding. Mifepristone's interaction with the coactivator cleft of this SR suggests that it may be a useful molecular scaffold for further coactivator binding inhibitor development.

3ketosteroid receptors

3 ketosteroid receptors

Media:

3 ketosteroid receptors3 ketosteroid receptors3 ketosteroid receptors3 ketosteroid receptors3 ketosteroid receptors

http://buy-steroids.org